Arc Length
Liming Pang

We are going to find a way to compute the length of a curve that is the
graph of some function y = f(z) using the idea of Riemann sum and hence
integration.

Given a function y = f(x) on an interval [a, b], we call its graph the curve
C. In order to compute the length of C', we first divide the interval [a, ]
into n pieces with endpoints a = x¢g < 1 < ...,x,_1 < x, = b, and denote
Az; = x; — x;_1, denote y; = f(x;), Ay; = y; — yi—1. We connect the line
segment between (x;_1, f(z;-1)) and (x;, f(z;)).

The Mean Value Theorem tells us there exists x} € (z;_1, ;) such that
flxp) = Ayl . The length of this segment is computed by Pythagorean The-
orem:
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Sum up the length of these line segments:
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As max A:cz- — 0, this summation will converge to the length of the curve
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So we define the arc length of the graph of y = f(z) between (a, f(a)) and
(b, £(b)) to be:
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If we fix an initial point (a, f(a)), then for each = € [a,b], we can get an
arc length for the part of graph on [a, x], hence we get an arc length function:
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Example 1. Find the length of the graph of y* = x3 between (1,1) and (4, 8).

Between these two points, the curve is above x-axis, so y = z2. So the
arc length is
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Example 2. Find the length of the arc of the parabola x = y* from (1,—1)
to (1,1).

In this example, x is a function of y, so we need to apply the formula for
arc length the other way round.
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Example 3. Find the arc length function for the curve y = 2% — % Inx taking

(1,1) as the starting point.
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